

#### **396EM Airline Operations and Scheduling/ 6075MAA Airline Scheduling and Operations**

Lecture 4b Gate Assignment

Developed & Revised Presented: Kinki Leung

專業 創新 胸懷全球 Professional・Creative For The World



## Learning Outcome







Formulate the Mathematical model of Gate assignment in passengers and baggage handling.



396EM/6075MAA

#### Gate assignment



Assigning arriving flights to airport gates have a major impact on maintaining efficiency of flight schedules and passenger satisfaction.

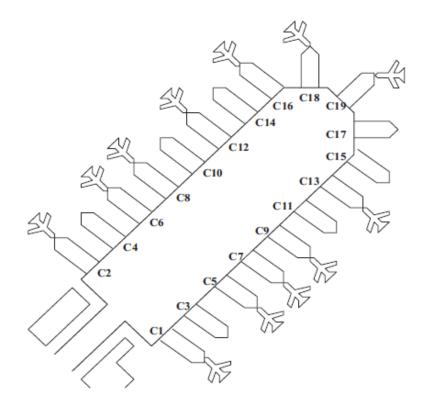
Factors affect the gate assignment: Aircraft size, passenger walking distance, baggage transfer, ramp congestion, aircraft rotation and aircraft service requirements (Gu and Chung 1999)



## Gate assignment handling



- Usually there are 3 levels
  - Ground controllers use the flight schedule to examine the capacity of gates to accommodate the flights.
  - Develop daily plans before the actual day of operation
  - Daily plan are updated and revised due to irregular conditions (delays, bad weather, mechanical failure ..etc)




# **Case Study**



# (Minimise Passenger walking distance)

- C Concourse at San Francisco (SFO)
- Total 19 gates (C1-C19)
- 12 aircraft already at the gates for departure





# Case Study (Con't)



- 7 flights will be arrived and assigned to the remaining gates
- F1-F7 refer to the flights
- Passengers will connect to other departing flights from these 7 flights
- Number of Passengers flow is shown below

| Flight     | Departing gates |    |    |   |    |    |    |    |   |    |    |    |    |    |    |    |    |    |    |
|------------|-----------------|----|----|---|----|----|----|----|---|----|----|----|----|----|----|----|----|----|----|
|            | 1               | 2  | 3  | 4 | 5  | 6  | 7  | 8  | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| F1         | 5               | 5  | 10 | 8 | 15 | 8  | 2  | 10 | 8 | 20 | 5  | 4  | 0  | 9  | 3  | 4  | 1  | 2  | 1  |
| F2         | 5               | 2  | 1  | 4 | 19 | 9  | 4  | 2  | 3 | 2  | 27 | 3  | 8  | 4  | 0  | 2  | 1  | 7  | 2  |
| F3         | 10              | 0  | 4  | 9 | 13 | 4  | 4  | 4  | 3 | 5  | 5  | 8  | 4  | 9  | 11 | 7  | 9  | 4  | 4  |
| F4         | 4               | 8  | 5  | 4 | 10 | 4  | 1  | 0  | 0 | 2  | 4  | 19 | 1  | 2  | 4  | 5  | 5  | 8  | 2  |
| F5         | 4               | 11 | 9  | 9 | 6  | 3  | 1  | 4  | 4 | 2  | 1  | 0  | 3  | 5  | 1  | 2  | 2  | 3  | 4  |
| F6         | 1               | 2  | 42 | 5 | 2  | 7  | 6  | 2  | 4 | 7  | 2  | 3  | 6  | 4  | 10 | 2  | 1  | 0  | 0  |
| <b>F</b> 7 | 3               | 3  | 2  | 5 | 9  | 13 | 11 | 2  | 2 | 3  | 7  | 22 | 4  | 0  | 1  | 1  | 2  | 2  | 9  |



# Case Study (Con't)



#### Distance in yards between the gates are shown below

| Gates | Departing Gates |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|-------|-----------------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|       | 1               | 2   | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| 3     | 10              | 40  | -  | 30 | 10 | 40 | 20 | 50 | 30 | 60 | 40 | 70 | 50 | 80 | 60 | 90 | 70 | 90 | 80 |
| 4     | 40              | 10  | 30 | -  | 40 | 10 | 50 | 20 | 60 | 30 | 70 | 40 | 80 | 50 | 90 | 60 | 90 | 70 | 80 |
| 10    | 70              | 40  | 60 | 30 | 50 | 20 | 40 | 10 | 30 | -  | 40 | 10 | 50 | 40 | 60 | 30 | 70 | 40 | 50 |
| 11    | 50              | 80  | 40 | 70 | 30 | 60 | 20 | 50 | 10 | 40 | -  | 30 | 10 | 40 | 20 | 50 | 30 | 50 | 40 |
| 14    | 90              | 60  | 80 | 50 | 70 | 40 | 60 | 30 | 50 | 20 | 40 | 10 | 30 | -  | 40 | 10 | 50 | 20 | 30 |
| 15    | 70              | 100 | 60 | 90 | 50 | 80 | 40 | 70 | 30 | 60 | 20 | 50 | 10 | 40 | -  | 30 | 10 | 30 | 20 |
| 17    | 80              | 100 | 70 | 90 | 60 | 80 | 50 | 70 | 40 | 60 | 30 | 50 | 20 | 40 | 10 | 30 | -  | 20 | 10 |



## **Distance Calculations**



Walking distance = ∑ number of passengers x distance

e.g. F1 assigned to gate 3,

Total walking distance =

5 x 10 + 5x 40 + 0 x 8 + .... + 2 x 90 + 1 x 80 = 5,010 yards

Binary Decision Variable:

 $x_{i,j} = \begin{cases} 1 \text{ if flight } i \text{ is assigned to candidate gate } j \\ 0 \text{ otherwise} \end{cases}$ 



# **Traveling Distance**



| Flight/gate | 3     | 4     | 10    | 11    | 14    | 15    | 17    |
|-------------|-------|-------|-------|-------|-------|-------|-------|
| F1          | 5,010 | 4,390 | 3,820 | 4,870 | 5,060 | 6,650 | 7,090 |
| F2          | 4,240 | 5,290 | 4,190 | 3,020 | 4,650 | 4,400 | 4,970 |
| F3          | 5,610 | 5,950 | 4,930 | 4,270 | 4,910 | 4,950 | 5,320 |
| F4          | 4,500 | 3,990 | 3,280 | 3,580 | 3,460 | 4,320 | 4,460 |
| F5          | 2,950 | 2,720 | 3,060 | ,3490 | 3,620 | 4,330 | 4,530 |
| F6          | 3,060 | 4,310 | 4,740 | 3,900 | 5,760 | 5,300 | 6,020 |
| F7          | 4,680 | 4,380 | 3,290 | 3,620 | 3,970 | 4,960 | 5,220 |

#### Table 11.3 Traveling distances (yards)



## **Mathematical Model**



- Minimize  $5010x_{F1,3} + 4390x_{F1,4} + ... + 5220x_{F7,17}$
- Constraints for Flight F1:

 $x_{F1,3} + x_{F1,4} + x_{F1,10} + x_{F1,11} + x_{F1,14} + x_{F1,15} + x_{F1,17} = 1$ Similarly for the other 6 constraints for the other flights

Additional Constraints for Gate 3:

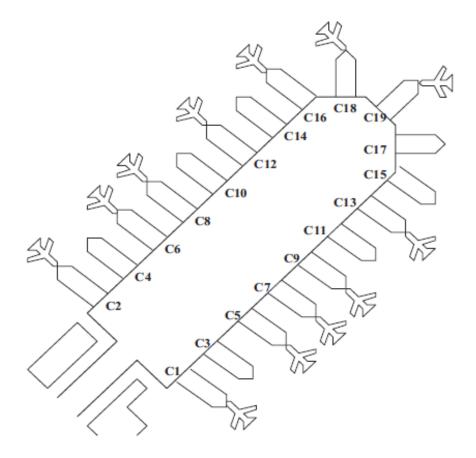
$$x_{F1,3} + x_{F2,3} + x_{F3,3} + x_{F4,3} + x_{F5,3} + x_{F6,3} + x_{F7,3} = 1$$

Similarly for the other constraints of the other six gates



#### Results




- 49 binary decision variables and 14 constraints are generated for the integer linear programming.
- Optimal solution for the total walking distance among all passengers is 26,000 yards.



# Case Study (Modify)



Assume the gates 10 and 14 cannot be used for aircraft F1





# **Additional Constraints & Results**

Cityu

Additional Constraints to the restriction of the assignment of gate 10 and 14 to flight F1.

$$X_{F1,10} = 0$$
  
 $X_{F1,14} = 0$ 

- Running the model with new constraints
- Optimal solution for the total walking distance among all passengers is 26,700 yards.

| Revised | assignments | of gates | to flights |
|---------|-------------|----------|------------|
|---------|-------------|----------|------------|

| Flight     | Gate assigned to |
|------------|------------------|
| F1         | 4                |
| <b>F</b> 2 | 11               |
| F3         | 15               |
| F4         | 14               |
| F5         | 17               |
| F6         | 3                |
| F7         | 10               |
|            |                  |



# Baggage Handling



- Transportation of baggage includes scheduling the number of baggage handlers, baggage trailers, delays, lost baggage and missed connections.
- Concept of baggage handling has been studied under different scopes:
  - Security purposes and detection of explosives (McLay et al. 2006 & Jasobson et al 2005)
  - Under gate assignment (Haghani and Chen 1998 and Lam, et al. 2002)
  - Adopting Radio Frequency Identification (RFID) (Maike 2008)



# Mathematical Model for Baggage Handling



- Similar to gate assignment (Transit Passengers)
- Objective is to mininise the total traveling distance for transit bags
- Table below presents the amount of transit bags, mail, and cargo from each of the arriving aircraft to departing gates.

| Table 11.0 | baggage now from arriving nights to departing gates (units of |
|------------|---------------------------------------------------------------|
|            | baggage)                                                      |

from ampiring flights to departing gates (n

| Flight     | Departing gates |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|------------|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|            | 1               | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| F1         | 19              | 28 | 11 | 8  | 30 | 25 | 33 | 5  | 49 | 14 | 38 | 38 | 14 | 23 | 17 | 4  | 20 | 44 | 8  |
| F2         | 43              | 40 | 22 | 29 | 4  | 49 | 8  | 6  | 20 | 21 | 17 | 5  | 27 | 29 | 29 | 40 | 42 | 34 | 25 |
| F3         | 22              | 17 | 36 | 45 | 22 | 28 | 17 | 23 | 18 | 44 | 12 | 8  | 41 | 48 | 25 | 11 | 27 | 47 | 28 |
| F4         | 47              | 11 | 4  | 26 | 16 | 21 | 24 | 8  | 45 | 22 | 45 | 20 | 14 | 22 | 32 | 32 | 9  | 39 | 7  |
| F5         | 3               | 24 | 46 | 38 | 48 | 7  | 24 | 33 | 29 | 43 | 7  | 21 | 45 | 47 | 28 | 11 | 17 | 3  | 23 |
| F6         | 9               | 47 | 18 | 3  | 44 | 14 | 4  | 27 | 34 | 38 | 17 | 26 | 2  | 3  | 28 | 40 | 11 | 8  | 46 |
| <b>F</b> 7 | 46              | 34 | 48 | 42 | 26 | 12 | 40 | 49 | 18 | 36 | 24 | 6  | 18 | 9  | 2  | 10 | 14 | 47 | 9  |



Table 11 6

# Baggage Handling Case Study



- Assume baggage transported by baggage trailers from gates to gates on ramp and 5 bags per trailers.
- Convert the number of baggage flow to the number of trips that trailers need to make

e.g. 19 baggage units to be transported from F1 to gate 1: [19/5] = 4 (rounded-up integer)

Consider the distance traveled by trailers to transport baggage : Baggage transport distance = ∑ number of trips x distance



## Baggage Handling Case Study (Con't)

| Flight     | Gate |    |    |   |    |    |   |    |    |    |    |    |    |    |    |    |    |    |    |
|------------|------|----|----|---|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|
|            | 1    | 2  | 3  | 4 | 5  | 6  | 7 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| F1         | 4    | 6  | 3  | 2 | 6  | 5  | 7 | 1  | 10 | 3  | 8  | 8  | 3  | 5  | 4  | 1  | 4  | 9  | 2  |
| F2         | 9    | 8  | 5  | 6 | 1  | 10 | 2 | 2  | 4  | 5  | 4  | 1  | 6  | 6  | 6  | 8  | 9  | 7  | 5  |
| F3         | 5    | 4  | 8  | 9 | 5  | 6  | 4 | 5  | 4  | 9  | 3  | 2  | 9  | 10 | 5  | 3  | 6  | 10 | 6  |
| F4         | 10   | 3  | 1  | 6 | 4  | 5  | 5 | 2  | 9  | 5  | 9  | 4  | 3  | 5  | 7  | 7  | 2  | 8  | 2  |
| F5         | 1    | 5  | 10 | 8 | 10 | 2  | 5 | 7  | 6  | 9  | 2  | 5  | 9  | 10 | 6  | 3  | 4  | 1  | 5  |
| F6         | 2    | 10 | 4  | 1 | 9  | 3  | 1 | 6  | 7  | 8  | 4  | 6  | 1  | 1  | 6  | 8  | 3  | 2  | 10 |
| <b>F</b> 7 | 10   | 7  | 10 | 9 | 6  | 3  | 8 | 10 | 4  | 8  | 5  | 2  | 4  | 2  | 1  | 2  | 3  | 10 | 2  |

#### Table 11.7 Baggage flow in number of trips for trailers from arriving flights to departing gates





#### Baggage Handling Case Study (Con't)



#### Table 11.8 Distance matrix for baggage trailers on the ramp (yards)

| Gate | ate |     |     |     |     |     |    |    | Departing Gates |    |     |     |     |     |     |     |     |     |     |
|------|-----|-----|-----|-----|-----|-----|----|----|-----------------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|      | 1   | 2   | 3   | 4   | 5   | 6   | 7  | 8  | 9               | 10 | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  |
| 3    | 15  | 60  | -   | 45  | 15  | 60  | 30 | 75 | 45              | 90 | 60  | 105 | 75  | 120 | 90  | 135 | 105 | 135 | 120 |
| 4    | 68  | 17  | 51  | -   | 68  | 17  | 85 | 34 | 102             | 51 | 119 | 68  | 136 | 85  | 153 | 102 | 153 | 119 | 136 |
| 10   | 112 | 64  | 96  | 48  | 80  | 32  | 64 | 16 | 48              | -  | 64  | 16  | 80  | 64  | 96  | 48  | 112 | 64  | 80  |
| 11   | 65  | 104 | 52  | 91  | 39  | 78  | 26 | 65 | 13              | 52 | -   | 39  | 13  | 52  | 26  | 65  | 39  | 65  | 52  |
| 14   | 135 | 90  | 120 | 75  | 105 | 60  | 90 | 45 | 75              | 30 | 60  | 15  | 45  | -   | 60  | 15  | 75  | 30  | 45  |
| 15   | 98  | 140 | 84  | 126 | 70  | 112 | 56 | 98 | 42              | 84 | 28  | 70  | 14  | 56  | -   | 42  | 14  | 42  | 28  |
| 17   | 112 | 140 | 98  | 126 | 84  | 112 | 70 | 98 | 56              | 84 | 42  | 70  | 28  | 56  | 14  | 42  | -   | 28  | 14  |

#### Table 11.9 Baggage transport distances (yards)

|            |       |       |       | Gate  |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Flight     | 3     | 4     | 10    | 11    | 14    | 15    | 17    |
| F1         | 6,420 | 7,820 | 5,616 | 4,004 | 5,685 | 5,516 | 5,936 |
| F2         | 7,965 | 8,636 | 6,992 | 5,707 | 6,525 | 6,762 | 6,986 |
| F3         | 8,460 | 9,197 | 7,136 | 5,824 | 6,690 | 7,224 | 7,518 |
| F4         | 7,005 | 8,296 | 6,064 | 4,537 | 6,015 | 5,922 | 6,426 |
| <b>F</b> 5 | 7,320 | 8,398 | 6,560 | 5,174 | 6,600 | 7,000 | 7,546 |
| F6         | 6,975 | 7,480 | 5,328 | 4,719 | 5,565 | 5,978 | 6,244 |
| F7         | 6,450 | ,7327 | 6,528 | 5,772 | 7,590 | 8,008 | 8,470 |



# Case Study (Modify)



Objective function: Mininise the total distance for both passenger and baggage traveling and transport distance.

```
Total distance = w1(Passenger traveling distances) +
w2(baggage transport distance)
```

Assume higher weight to transport of baggage than to passenger traveling distances

w1 = 1 w2 = 3

Mininise: 1(5010xF1,3 + 4290xF1,4 + ... + 5220xF7,17) + 3(6420xF1,3 + 7820xF1,4 + ... + 8470xF7,17)



#### Result



Solution to gate assignment for both passenger and baggage transport

| Flight | Gate assigned to |
|--------|------------------|
| F1     | 11               |
| F2     | 17               |
| F3     | 14               |
| F4     | 15               |
| F5     | 3                |
| F6     | 10               |
| F7     | 4                |



#### Summary



Mathematical model proposed by Bihr (1990)
 Indices

- i = index for arriving flights
- j, k = index for gates

Sets

- F = set of arriving flights
- G = set of available gates for arriving flights
- K = set of departing gates



# Summary (Con't)

#### Parameters

- = number of passengers arriving on flight *i* and departing from gate k
- $P_{i,k}$  $dp_{ki}$ = distance units (in yards, meters, feet, etc) for passengers from gate k to gate j
- $TP_{ij}$ = Total walking distance for all passengers on flight *i* assigned to arrival gate j
- $t_{i,k} \\ db_{kj}$
- = number of trips to transport baggage from flight *i* to departing gate k
- = distance units (in yards, meters, feet, etc.) to transport baggage on ramp from departing gate k to arriving gate j
- $TB_{ii}$ = Total transport distance for all baggage on flight *i* assigned to arrival gate *j* = Weights assigned to total passenger walking and baggage transport  $W_1, W_2$ distances respectively

 $TP_{ii}$  and  $TB_{ii}$  are calculated as follows:

for all  $i \in F$  and  $j \in G$  $TP_{i,j} = \sum_{k \in K} p_{i,k} \cdot dp_{k,j}$ 

$$TB_{i, j} = \sum_{\substack{k \in K \\ k \in K}} t_{i, k} \cdot db_{k, j}$$
 for all  $i \in F$  and  $j \in G$ 



**登港城市大學** 

# Summary (Con't)



#### Decision Variable

 $x_{i,j} = \begin{cases} 1 \text{ if flight } i \text{ is assigned to gate } j \\ 0 \text{ otherwise} \end{cases}$ 

#### **Objective Function**

 $\begin{array}{lll} \textit{Minimize} & \sum & \sum (w_1 TP_{i,j} x_{i,j} + w_2 TB_{i,j} x_{i,j}) \\ & i \in F \ j \in G \end{array}$ 

Subject to

| $\sum_{j \in G} x_{i, j} = 1$    | for all <i>i</i>              | (11.1) |
|----------------------------------|-------------------------------|--------|
| $\sum_{i \in F} x_{i, j} = 1$    | for all <i>j</i>              | (11.2) |
| $x_{i,j} \in \left\{0,1\right\}$ | for all <i>i</i> and <i>j</i> |        |



# **Key Reference**



- Bazargan, M. (2010) Airline Operations and Scheduling. 2nd edition, Ashgate
  - Chapter 11 Gate Assignment
  - Baggage Handling STACK@EASE in HK

https://www.internationalairportreview.com/video/77137/video-hong-konginternational-airport/

Baggage Handling - RFID

https://www.youtube.com/watch?v=nw\_irxO0hNM

