

396EM Airline Operations and Scheduling / 6075MAA Airline Scheduling and Operations

Lecture 7a Experimental Design for Queuing Simulation (Results Analysis and Interpretation)

Developed & Revised : Dr Ammar Al-Bazi (Coventry) Rossella Lau (Scope) Presented: Kinki Leung

專業 創新 胸懷全球 Professional・Creative For The World

Outline of the Lecture

- Experimental Design for Queuing Simulation
- Experimentation designs
- Collection of simulation results
- Probability Concept
- Result Analysis and Interpretation
 - Confidence Interval
 - Key Performance Indicators
 - Improvement
- Typical KPIs for arrival / departure
- Simul8's basic building blocks
 - Randomness
 - Batching
 - Resources

Experimentation

Modelling and Analysis of Results

396EM/6075MAA

Experimentation

Experimenter's first goal is to understand the process!

Experiments are used to study effects of parameters as they are set at various levels.

Experimentation is one mechanism for identifying causation, which is a step toward understanding how one set of factors influence another set of factors.

Goals of Experimentation

To maximise the ability to test the current situation.

To facilitate generation of new improvement situations.

Experimental Design Process

- Identify the suggested scenario/experiment.
- Define the measures of success
 (KPI –Key Performance Indicators)
- Run the experiment
- Collect and analyse the data
- Determine and verify the response
- Act on the results

Key Performance Indicators

- Total costs
- Total simulation time
- Mechanic team utilisation
- Business revenue
- Service team utilisation
- Work centres' utilization / idle times
- Number of services of each service team member
- Customers' average waiting times
- Queue at each work centre

The "As-Is" Simulation Modelling

- "As-Is" simulation is used to describe and analyse the current situation to identify bottleneck(s).
- The user describes the system.

Example: "As-Is" Model Before Run

Raminder Kaur: Mock Assignment for the "B&T Garage" Problem 2011

Example: "As-Is" Model After Run

Raminder Kaur: Mock Assignment for the "B&T Garage" Problem 2011

Example: "As-Is" Model Results

Vehide			Total Cost of all
Туре	Amount per day	Cost per MOT (£)	MOT's (£)
Cars	10	39.99	399.9
Light			
Vehicles	5	55	275
HGV	3	99.99	299.97
		Total cost per day	
		(£)	974.87
		Total cost Per week	
		(£)	4874.35

Service		Total hours worked	Total cost per week
Team	Hourly rate (£)	perweek	(£)
ST1	6	36	216
ST2	6	40	240
ST3	6	40	240
		Total per week (£)	696

Mechanic			Total cost per week
Team	Hourly rate (£)	Total hours per week	(£)
M1	12	40	480
M2	12	40	480
M3	12	40	480
M4	12	40	480
		Total Cost per week	
		(£)	1920
		Total Labour costs	
		(£)	2616
		Total Revenue (£)	2258.35

LynnEmery: Mock Assignment for the "B&T Garage" Problem 2011

Kerrie Martin: Mock Assignment for the "B&T Garage" Problem 2011

Simulation Run and Analysis

CityU

Probabilistic Simulation (also called stochastic) One or more of the independent variables are probabilistic (random) e.g. service / inter-arrival time.

- To measure performance of the simulation system.
- Also to determine if more runs needed till results are consistent.

Probability is our way of formally describing our world and evaluating uncertainties.

The probability of an event occurring is written as a fraction, a decimal or a percentage, e.g. the probability of getting an even number on rolling a dice is ½ or 0.5 or 50%

Reasons for Probabilistic Modelling

- The input parameters for the models depend on various external factors:
 - Because of these factors, realistic models are subject to randomness caused by systematic variation of the input parameters.
- A deterministic model does not consider these variations.
- An effective model should take into consideration the randomness associated with various input data. (More realistic models)

Source of Randomness

The following are some sources of randomness in simulated queuing systems:

- Arrivals of customers
- Service / Waiting times
- Queue time in normal / peak hours
- Queue length
- Service down time
- Others, e.g., sick leave of a staff

Controlling the Simulation Experiment

The purpose of running more than one experiment is that to cover as many solution possibilities through generating different simulation parameters at each simulation run.

The average solution of these simulation runs can probably be considered as a near estimate for the real life situation.

Simulation Warm-up and Replications

 The purpose of the warm-up is to prepare the simulation model to more mature state after randomizing its inputs and to eliminate the transient state.

E.g., in order to run a trial of 5 replicated automatically using SIMUL8:

- Confirm that the Warm-Up Period is 480 and the Results Collection Period is 2400 and run the model.
- Use Trials / Conduct Trial

Replication of Simulation Runs

Multiple replications of simulations

- run with same parameters except for the random numbers
- aim to obtain a better estimate of mean performance.
- Number of replications required?

		Mean time in system				
Day	Repl. 1	Repl. 2	Repl. 3	Repl. 4	Repl. 5	Mean
1	93.98	56.88	142.04	110.87	82.32	97.22
2	618.08	501.71	292.19	672.74	135.28	444.00
3	1737.02	1162.92	336.36	1538.36	1291.77	1213.29
4	1769.77	953.53	3895.80	1069.59	3098.86	2157.51
5	1663.22	3006.68	1346.40	2837.09	2118.00	2194.28
6	2425.34	1495.23	2731.65	2855.38	3314.20	2564.36
7	1611.92	1798.13	1922.52	1797.52	3680.18	2162.05
8	2885.21	1185.96	1706.25	1548.68	544.49	1574.12
9	1986.58	3628.20	2958.04	3194.36	4104.93	3174.42
10	2521.63	2122.12	2537.90	2181.94	4068.63	2686.44
						•
•						•

Confidence interval is a statistical means for showing how accurately the mean average of a value is being estimated.

Confidence Interval

95% Confidence interval

Usually, a significance level of 5% is selected – it gives 95% probability that the value of the true mean lies within the confidences intervals.

Confidence	Interval	Methods:
------------	----------	----------

Mean time Cumulative Standard Lower Upper interval in system deviation interval % deviation mean 2484.72 2484.72 n/a n/a n/a n/a 2354.64 2419.68 91.980 1593.27 34.15% 3246.08 2396.47 2411.94 66.406 2246.98 2576.90 6.84% 2196.91 2358.18 120.414 2166.58 2549.79 8.13% 2350.89 105.547 2321.74 2219.84 2481.95 5.57% 2247.03 2333.58 103.489 2224.98 2442.19 4.65% 2489.73 2355.89 111.392 2252.87 2458.91 4.37% 2396.50 2360.97 104.123 2273.92 2448.02 3.69% 2207.35 2343.90 110.039 2259.32 2428.48 3.61% 2530.37 2362.55 119.333 2277.18 2447.91 3.61% 2358.83 2362.21 113.215 2286.15 2438.27 3.22% 2321.83 2358.84 108.574 2289.86 2427.83 2.92% 104.005 2346.77 2357.91 2295.06 2420.76 2.67% 2223.44 2348.31 106.192 2287.00 2409.62 2.61% 2276.51 2343.52 103.995 2285.93 2401.11 2.46% 2310.23 2341.44 100.813 2287.72 2395.16 2.29% 2302.12 2339.13 98.076 2288.70 2389.55 2.16% 2418.72 2343.55 96.980 2295.32 2391.78 2.06% 2339.05 2343.31 94.253 2297.88 2388.74 1.94% 2193.30 2335.81 97.679 2290.10 2381.53 1.96%

SIMUL8 supports *Results Manager* which can collect the results from replications and estimate number of runs which may led the results to fall into the confidence intervals.

Experiments (Scenarios)

- A narrative description of what people do and experience as they try to make use of computer systems and applications.
- Scenarios can be used to describe present "As-Is" Scenario.
- Most often used to describe possible futures "What-If" Scenarios.

"What-If" Scenarios

When "As-Is" simulation run falls into an expected confident level and expected KPIs are collected, design "What-if" scenarios to find problems, improvement, alternatives, etc:

<u>Scenario 1</u>: *Reduce* service employees to 2
<u>Scenario 2</u>: *Reduce* mechanic employees to 2
<u>Scenario 3</u>: *Reduce* the quantity of reception desks
<u>Scenario 4</u>: *Modify* the work shift patterns of each employee resource
<u>Scenario 5</u>: *Modify* resource responsibilities and work centre locations
<u>Scenario 6</u>: *Make* One Customer Service Employee Part Time

• • • • • •

Popular Scenarios for Queuing

- Add more resources for the existing service in order to reduce the service time of the current service(s).
- Adopt more than one service (work centre) with multiple queues if required.
- Manipulate the queue organisation (circulate, percent, uniform, label, etc)
- Change the service pattern (FCFS, LCFS, Priority, etc).
- Adopt more than one working shift.

KPI for Airline departure

- Average queue time / persons
- Maximum queue time / persons
- Service counter's utilization rate
- Service time for different passenger type?
- Others ...

Queue time / System time

KPI for airport/airline arrival

- Maximum queue time
- Service utilization rate
- Service time for different passenger types?
- Any others?
 - Average queue time may not be favorable to focus on as all passengers arrive at the same time, queue time varies from zero to maximum and "average" seemed not significant

More for SIMUL8

396EM/6075MAA

Random sampling

Random Sampling Parameters

Multiple runs

KPI	Recommended Runs 🔺
(Recommended runs for 5% precision)	
Security: Average Time in System	6
Desk 1: Efficiency Work Time	4
Desk 3: Efficiency Work Time	4
Desk 3: Operation Time	86

Conduct Trial

Number of runs in trial:	5	Run Trial	Apply
Calculate Required Numb	er of Runs	Extend	🔀 Cancel
Base Random Number Set:	1		🕜 Help
Name of trial:			🗅 Memo
🔽 Auto Display Results Summ	nary at end of last	run	
Display ranges (%): 95	•		
Add Results to V.I.S.A	V·I·S·A	Preselect V.	I.S.A model
	What is V.I.S.A	2	
🔲 Always use Parallel Proces	sors for fast result	s	
🗹 Automatic (let SIMUL8 dec	ide based on wha	it is likely to be qui	ckest)
Use Antithetic runs for varia	ance reduction (Pi end of last run	rofessional Only)	

電 遠 修 勝 登港城市大学

p.27

Start Point: Batching

- This control the number of items which arrive at one time.
- if an "arrival" occurs at time 10:30 and the number of items set to leave the "Start Point" is "Fixed" 100, then 100 items of the specified work item type will arrive at 10:30.

Named distribution

Resource

- Resources are items in the simulation that are required at Activities in order for the Activity to work on a work item.
- Resources can be shared between all Activities which use them. These are known as "shared" or "floating" resources because they float between the Activities which require them.
- Examples of "resources" are:
 - Labour
 - Special Fitments of machines
- Beds in a hospital ward

Resource 1		🖌 ок
Number of this type of	10	🔀 Cancel
Shift Dependent	Shifts	🕑 Help
	Members	Memo
Auto adjust replicate levels		Results
Finance		Travel
Erase		Graphics
		Find
		Availability

Assigning Resources to an Activity

- One resource of the same type can allocated to different Activities
 - Specify quantity of the resource
 - An activity needs to wait if insufficient quantity
 - "Exceed" quantity will be on "standby"

Different resources can be assigned to an Activity

Resource Utilisation

Resource utilisation is an important parameter that affects business application performance.

Resource utilisation is the cost of the project in terms of business system resources.

What does high utilisation rate with high achieved queue mean? Suggest scenarios to reduce the queue by maintaining the same utilisation rate. Can you?

Sharing a Resource Between More Than One Activity

- Simul8 Resources move between Activities.
- A travel time can be imposed using Travel option in the resource dialog.
- How To:
 - Select the Travel button and then the resource Activity in the Form list.
 - Select the Activity the resource will travel to and then set the travel time in time units.

Pool of Resources

- Resources can be pooled so that (for example) Fitters can fit and Operators can operate or either Operators or Fitters can polish.
- A pooled resource is one which does not really exist but instead is a combination of other resources.
- If task A can be performed by people A, task B can be performed by people B and task C can be performed by either A or B people. Create a pooled resource called C and use the Pooled check box (in the resource dialog) so that either A or B can be used whenever an Activity is seeking resource type C.
- To make use of a resource at an Activity: In the Activity dialog, click the resource button and Add the resource to the list of resources required at that Activity.

References

- Robinson, S. (2014) Simulation: The Practice of Model Development and Use. 2nd edn. Palgrave, Macmillan
- Greasley, A (2004) Simulation Modelling for Business. Ashgate
- Shalliker, J, (2014) An Introduction to Simulation in the Service Industry using SIMUL8 2014 (release 21). SIMUL8
- Taha, Hamdy A. (2010) Operations Research: An Introduction. 9th edn. Prentice Hall

